Making Silicon Nitride Film a Viable Gate Dielectric
نویسنده
چکیده
To extend the scaling limit of thermal SiO2 in the ultrathin regime when the direct tunneling current becomes significant, members of this author’s research team at Yale University, in collaboration with the Jet Process Corporation, embarked on a program to explore the potential of silicon nitride as an alternative gate dielectric. In this paper, highquality silicon nitride (or oxynitride) films made by a novel jet vapor deposition (JVD) technique are described. The JVD process utilizes a high-speed jet of light carrier gas to transport the depositing species onto the substrate to form the desired films. The film composition has been determined to consist primarily of Si and N, with some amounts of O and H. Metal–nitride–Si (MNS) capacitors based on the JVD nitride films deposited directly on Si exhibit relatively low densities of interface traps, fixed charge, and bulk traps. The interface traps at the nitride/Si interface exhibit different properties from those at the SiO2/Si interface in several aspects. In contrast to the conventional CVD silicon nitride, the high-field I V characteristics of the JVD silicon nitride fit the Fowler–Nordheim (F–N) tunneling theory over four to five orders of magnitude in current, but do not fit at all the Frenkel–Poole (F–P) transport theory. This is consistent with the much lower concentration of electronic traps in the JVD silicon nitride. Results from the carrier separation experiment indicate that electron current dominates the gate current with very little hole contribution. Both theoretical calculation and experimental data indicate that the gate leakage current in JVD silicon nitride is significantly lower than that in silicon dioxide of the same equivalent oxide thickness. The breakdown characteristics of the JVD nitride are also respectable. Compared to their MOSFET counterparts, MNS transistors exhibit reduced low-field transconductance but enhanced high-field transconductance, perhaps due to the presence of border traps. As expected, the JVD silicon nitride films exhibit very strong resistance to boron penetration and oxidation at high temperatures. These properties, coupled with its room-temperature deposition process, make JVD silicon nitride an attractive candidate to succeed thermal SiO2 as an advanced gate dielectric in future generations of ULSI devices.
منابع مشابه
Stress control for overlay registration in a-Si:H TFTs on flexible organic-polymer-foil substrates
I-Chun Cheng Alexis Kattamis Ke Long James C. Sturm Sigurd Wagner Abstract — Mechanical stress in hydrogenated amorphous-silicon (a-Si:H) thin-film transistors (TFTs) is becoming an important design parameter, especially when the TFTs are made on compliant substrates. Excessive stress always has been avoided to prevent film fracture and peeling. Now, attention is turning to the effects of stres...
متن کاملEffects of Deposition Method of PECVD Silicon Nitride as MIM Capacitor Dielectric for GaAs HBT Technology
Thin silicon nitride (Si3N4) films deposited using plasma-enhanced chemical deposition (PECVD) method have been used as metalinsulator-metal (MIM) capacitor dielectric for GaAs heterojunction bipolar transistor (HBT) technology. The characteristics of the films, which were deposited at 300C, were found to be dependent on how the PECVD film was deposited. A silicon nitride film deposited as a mu...
متن کاملExcitation and Detection of Vibrations of Micromechanical Structures Using a Dielectric Thin Film
A new technique is introduced for both the excitation and the detection of vibrations of micromechanical skuctures. This makes use of a dielectric thin film, sandwiched between lower and upper electrodes, on top of the vibrating structure. The excitation is based on elecbrostatic forces between the charged electrodes, causing deformation of the dielectric film and bending of the multilayer stru...
متن کاملHot-Carrier Reliability of P-MOSFET with Ultra-Thin Silicon Nitride Gate Dielectric
The degradation of 100 nm effective channel length pMOS transistors with 14 A equivalent oxide thickness JVD Si3N4 gate dielectric under hot-carrier stress is studied. Interface-state generation is identified as the dominant degradation mechanism. Hot-carrier-induced gate leakage may become a new reliability concem. Hot-carrier reliability of 14 A Si3N4 transistors is compared to reliability of...
متن کاملReaction/annealing pathways for forming ultrathin silicon nitride films for composite oxide–nitride gate dielectrics with nitrided crystalline silicon–dielectric interfaces for application in advanced complementary metal–oxide–semiconductor devices
Aggressive scaling of complementary metal–oxide–semiconductor ~CMOS! devices requires gate dielectrics with an oxide equivalent thickness, tox,eq;1 nm or less by the product introduction year 2012. Direct tunneling presents a significant performance limitation in field-effect transistors ~FETs! with homogeneous oxide gate dielectrics ,1.7 nm. Boron diffusion from p poly-Si gate electrodes in p-...
متن کامل